Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066136

ABSTRACT

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Interferon Type I , Interferon-Induced Helicase, IFIH1 , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19 , Coronavirus Infections/immunology , Humans , Infectious bronchitis virus/metabolism , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitinated Proteins , Viral Nonstructural Proteins/metabolism
2.
Nat Struct Mol Biol ; 28(7): 614-625, 2021 07.
Article in English | MEDLINE | ID: covidwho-1550333

ABSTRACT

p97 processes ubiquitinated substrates and plays a central role in cellular protein homeostasis. Here, we report a series of cryo-EM structures of the substrate-engaged human p97 complex with resolutions ranging from 2.9 to 3.8 Å that captured 'power-stroke'-like motions of both the D1 and D2 ATPase rings of p97. A key feature of these structures is the critical conformational changes of the intersubunit signaling (ISS) motifs, which tighten the binding of nucleotides and neighboring subunits and contribute to the spiral staircase conformation of the D1 and D2 rings. In addition, we determined the cryo-EM structure of human p97 in complex with NMS-873, a potent p97 inhibitor, at a resolution of 2.4 Å. The structures showed that NMS-873 binds at a cryptic groove in the D2 domain and interacts with the ISS motif, preventing its conformational change and thus blocking substrate translocation allosterically.


Subject(s)
Adenosine Triphosphate/chemistry , Protein Folding , Proteostasis/physiology , Signal Transduction/physiology , Valosin Containing Protein/metabolism , Acetanilides/pharmacology , Animals , Benzothiazoles/pharmacology , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/physiology , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Ubiquitinated Proteins/metabolism , Valosin Containing Protein/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL